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Abstract

A mixing chamber used in rocket engine testing at the NASA Stennis Space Center
is modelled by a system of two nonlinear ordinary differential equations. The mixer
Is used to condition the thermodynamic properties of cryogenic liquid propellant by
controlled injection of the same substance in the gaseous phase. The three inputs of the
mixer are the positions of the valves regulating the liquid and gas flows at the inlets,
and the position of the exit valve regulating the flow of conditioned propellant. Mixer
operation during a test requires the regulation of its internal pressure, exit mass flow,
and exit temperature. A mathematical model is developed to facilitate subsequent con-
troller designs. The model must be simple enough to lend itself to éubsequent feedback
controller design, yet its accuracy must be tested against real data. For this reason, the
model includes function calls to thermodynamic property data. Some structural prop-
erties of the resulting model that pertain to controller design, such as uniqueness of the
equilibrium point, feedback linearizability and local stability are shown to hold under
conditions having direct physical interpretation. The existence of fixed valve positions
that attain a désired operating condition is also shown. Validation of the model against

real data is likewise provided.

1  Introduction

The NASA John C. Stennis Space Center (SSC) conducts extensive ground-based testing
and flight certification of rocket engines, in particular, of the Space Shuttle Main Engine
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Figure 1: The Mixer Subsystem

(SSME). Combustion chambers and ”turb'omachinery related to rocket engines are also tested
at SSC. This work is part of an on-going effort to develop a software package providing flex-
ibility in simulation and control tasks [8, 2, 3] frequently found in test operations at SSC.
Test conditions require that liquid propellants, namely liquid oxygen and liquid hydrogen
(LH2) be supplied to the engine or component at very precise conditions of temperature
pressure and mass flow rate. An excess or deficiency in any of these three flow parameters
may result in damaged components or in a sub-optimal test. To achieve the required con-
ditions, the delivery system includes a mixing chamber, henceforth referred to as' “mixer

The mixer subsystem is depicted in Fig. 1. LH2 is stored in the run tank, which is kept
at a constant pressure by an independent control loop. Gaseous hydrogen (GH2) is stored

in high pressure bottles, and has a higher temperature than the LH2. One control valve
” is used to manipulate the flow of LH2 into the mixer.

teferred to as the “liquid valve
The positions of the valves constitute

There is also a “gas valve” and an “exit valve”.
the only control variables for the mixer subsystem. A mixer control system must achieve

tracking and regulation of mixer outputs to desired values. The outputs of interest are the
mixer pressure, exit flow temperature, and exit mass flow. A dynamic model and controller
are intended to replace the current method of operation of the mixer, which uses only a
.. steady-state thermodynamic model and extensive heuristics. The use of the modeling and

control techniques described herein is expected to provide great flexibility and better mixer




performance. In this article, focus is placed on the mathematical modelling stage, together

with an analysis of model properties and data validation.

2 Transient Thermodynamics Model of the Mixer

2.1 Valve Models

The flow w; of LH2 through the liquid valve dépends on the pressure difference across the
valve, the density of the source LH2 and the liquid valve opening coefficient C,; according

to [1]:
w = C1Cu/ (P — P)p (1)

In English units, P is the source LH2 pressure and P is the mixer pressure in psia; p; is
the source LH2 density in Ibm/ft3, and C; = 1.76 x 1072, For gas flow, there is a separate

CCyg1 /P2 — P? (#) ,when P, < 2P
(2)

,when P, > 2P (choked flow)

expression [1]:

wy =
CiCug/Typ
where T, is the source GH2 temperature in degrees Rankine (°R), P, is the source GH2

pressure in psia, and C,g is the gas valve opening coefficient. In English units, C2 =
2.857 x 1072 and Cy = 2.423 x 10~2. Specifications for the conditioned exit flow require

that the propellant be in the liquid phase. Therefore it is assumed that the form of Eq. (1)

is also valid for the exit flow, namely
wy = C3Cu/ (P = Fy)p (3)

where p and P are the mixer density and pressure, respectively, and P; is the pressure at

the outlet of the exit valve.

2.2 Mass and Energy Balances

The set of two nonlinear differential equations which constitute the model can be derived

from the conservation of mass for compressible flow and from the First Law of Thermo-

dynamics for a control volume including transient terms [9]. Upon manipulations, the

equations may be expressed in terms of internal energy and density derivatives as:
. 1
p = v(wl+w_g~we)
——

1
ya [wi(h — w) + wg(hg — ©) — welhe — u)]
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where V is the fixed mixer volume, h;, hy and h, are the source liquid, source gas, and exit
enthalpies, respectively. The mass flows w; are functions of pressure, and aré calculated

according to Egs. (1) and (2).

2.3 State Variable Model

Further manipulations are required to put the above physical model in state-space form. It is
assumed that enthalpy is conserved across the exit valve, and the definition [9] A = u+CP/p,

where C'is a constant depending on the choice of units, is used. For English units, C' = 0.185.

The resulting model is ¢compactly expressed as
(6)

fl(P(,O,U),p)Cvl +f2(P(p7u)7p)C'Ug —I—fg(P(p,u),p)C've
(7)

9 (P(p, u)a P U)Cvl + 92(P(p7 u): P U)Cvg =+ gg(P(p, u), P U)Cve

where

fi = CivV(B—-Pp

fo = CL,if P,>2P

fo = Ci4/P2—P%if P, <2P

fs = C3/(P=P)p

g = fi (hl_u)
p
92 f2( p

g = Cf

The constants are given by Cj = C1/V, Cy = Co/Type/V, C4 = —C3/V = —=C1/V,
C§{ = CC% and Cf = Cy V/Typge/V. 1t is to be noted that, given initial conditions of internal
energy and density, the numerical solution of Egs. (6, 7) requires that the mixer pressure
P be known at all times as a function of p and u. Such computation poses difficulties
and requires special routines. Indeed, strictly speaking, density and internal energy do not
completely determine pressure. Thermodynamic data for a variety of substances shows that
one may find density-energy-pressure triples that have the same densities and energies with
distinct corresponding pressures. Although it is possible, in principle, to find correlations
that link the variables in limited ranges, the number of separaté expressions and their
mathematical form makes this method inadmissible in the development of a controls model.
Fortunately, the errors introduced by assuming that pressure is a function of density and

internal energy are fairly small in the expected range of mixer operation. The selection



of a pressure based on p and u from thermodynamic data is not trivial, if correlations are
not to be used. The available data consists of two tables, one giving density and the other
energy, when pressure and temperature are known. The sought routines must perform then
a reverse look-up of the tables. The details of how these routines work are out of scope,
and it suffices to say that they have been proved to be accurate by using them to obtain
pressure and temperature from density and energy and then recovering input data by using
the original tables, with little error. For further details, readers are referred to [5].

2.4 QOutput Definitions

Mixer operation requires the simultaneous tracking of exit temperature, exit flow, and mixer
pressure. Exit temperature and mixer pressure are functions of the energy and density
states. Computation of these functions requires the intervention of thermodynamic tables
and interpolation algorithms which cannot be represented in closed form. However [5], to
each exit temperature and mixer pressure combination in the expected range of operation
there corresponds a unique value of the state [p, u]T. Therefore, it is convenient to specify
density and energy as outputs, along with exit mass flow. A real-time control system should
perform pre-processing of commanded mixer outputs to obtain the corresponding desired

state values. With these output definitions, the controls model becomes

Cy
o] _[ aew new flew ‘
i o) o) sew) || ®)

y=1[p, u, —Vf3Cu]"

where [Cyi Cyg- Cye)¥ is the control vector and y is the output vector.

3 Model Properties

3.1 Uniqueness of Equilibrium

The equilibrium point indicates the steady values of the density and internal energy of
the mixer when the control valves are set at fixed positions, for a given set of input flow
properties. For given values of the input fluid properties and C, coefficients, setting pcy = 0
establishes that The = 7hy + 7y and results in an expression relating the equilibrium density
Pev 0 the equilibrium mixer pressure P:



Graphical Interpretation of Mixer Equilibrium
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Figure 2: Mixer equilibrium

Setting t., = 0 gives the equilibrium exit eﬁthalpy he = hey In terms of the input enthalpies
and the mass flows: - - :
Ecv = —““ml. l +Tfl‘g L= E(P) (10)

The above enthalpy must match the thermodynamic property data at P and 7, of Eq. (9),
that is
hev = hin(Pev, P)

Substituting Egs. (9) and (10) into the above equation results in a single expression which
gives the equilibrium pressure:
h(P) = hi(o(P), P) (11)
A graphical interpretation of the equilibrium solution is shown in Fig. 2. The curve pP vs.
P has been drawn on the base plane. This plane curve is mapped to a space curve by the
thermodynamic property function hy,. The equilibriutn exit enthalpy A(P) is a function of
pressure only and the corresponding surface has also been graphed. The point where the
space curve pierces the surface is the equilibrium point of the system. The monotonicity of
the curve and surface indicate that there exists only one equilibrium point in the range of




interest of actual mixer operation. An iterative procedure is developéd in [5] that calculates

the equilibrium point, given thermodynamic parameters and fixed control inputs.

3.2 Valve Positions for a Prescribed Operating Condition

Having three independent controls in a two-state model allows the selection of steady values
for the states, and, in addition, an extra degree of freedom is available. This degree of
freedom can be used to fix the exit mass flow with the desired thermodynamic properties,
as shown next. Supppose it is desired to have a given exit mass flow, with prescribed
temperature (measured at the outlet of the exit valve). Let these quantities be denoted by we
and 7,. The back pressure P; at the outlet valve exit is assumed to be constant. The problem
is to determine the valve coefficients that achieve this. Two degrees of freedom are used for
w, and 7, and the third one is used to meet a desired mixer operating pressure, P. The back
pressure P; and T, determine the enthalpy h, which is constant across the valve. Therefore,
the enthalpy and mixer pressure at the exit valve inlet are known and, in turn, determine
the mixer density from thermodynamic data. A static energy and material balance gives
the reguired input flows that achieve a prescribed flow-exit enthalpy combination. The

following formulas are straightforward to derive:
S we(h — hy)
hy — hy
We (hl — h)
= = 7 12

where h, and hy are the gas and liquid supply enthalpies, respectively. Using the exit flow
and the input equilibrium flows from Eq.( 12), the three valve coefficients are determined

from Eq. (1) and (2). This procedure is complementary to the one described in the previous

section, which calculates the equilibrium point.

4 Zero Dynamics and Feedback Linearizability

Of the control techniques that are suitable for the present model structure, feedback lin-
earization [4, 7] is the simplest and most direct. Input/Output linearization consists in
finding a coordinate transformation which results in a system which is linear between the
new inputs and the outputs. Linear controller design can then be applied to the transformed
system. The technique, however, may have disadvantages. Specifically, the complexity in-
troduced by the cancellation of all nonlinear dynamics may be to high for a realistic imple-
mentation with limited computational resources. The other significant disadvantage is that
all state measurements are requirea. Peaking of control signals is also a factor of concern,




especially when actuator saturation and rate limitations are present. Linearizability anal-
ysis, however, is worth examining, since essential features of the model appear during the

analysis and provide a basis for other controller design techniques.

4.1 The Concept of Zero Dynamics

A fair mathematical discussion of the concept of zero dynamics is out of scope and can be
found in standard sources such as [4, 7]. Intuitively, when the order of the linear system
arising from the input transformation is less than the order of the original system, the
remaining zero dynamics can be realized by an appropriate set of state variables. These
variables represent some physical aspect of the system and must be kept bounded. Unsta-
ble zero dynamics constitute a fundamental limitation in several control design schemes,
including feedback linearization. When a system has stable zero dynamics, it is said to
be minimum-phase, a term which generalizes the concept of right-half plane zeros in linear

systems.

4.2 Relative Degree and Input Integration

The partial relative degree [7] of an output of a system is the order of the lowest derivative
of the output which is directly affected by at least one of the inputs. The model of Egs. (8)
has a characteristic which prevents direct application of input/output linearization theory.
It is seen that the third component of y is algebraically related to one of the control inputs,
namely Cy.. This implies that the partial relative degree of y3 is zero. Conceivably, one

could use a time-explicit control of the form
y3d(t)
Coe(t,pyt) = ~5F7———
vl b ) = =77 (Plo, ), )
. to attain perfect tracking of the output mass flow rate and use the two remaining controls
to force the flow to have the desired pressure and temperature. This approach suffers from
the drawback of not employing feedback and therefore of being not self-correcting or robust.
One way to get around this problem is to augment the exit valve channel with an integrator,
that is, let:
Cre =
where v is a new control input. Now C,e is regarded as a state, and the resulting system is
of third order, with three inputs and outputs. If the arguments of functions g; and f; are




dropped from the notation, the new system equations become:

P = [iCu+t f2Cug + f3Cse (13)
i = g1Cu+g Cug + 93C0e (14)
Coe = v (15)
(16)

y = [.0 [ _Vf30ve]T

Upon differentiating the outputs once, it is seen that the partial relative degrees are all 1

Z:/l = flel + fZCvg + f30ve (17)
Y2 = 91Cu + 92009 + g3Cue (18)
. Ofs OP
3 = -V [’Uf3+0ve (aﬁ 8 (flel +f20'ug+f30ve)+
O0fs OP
+ a‘_f; a (glel + gQC’Ug + .930'06)
+ 'b?(flcvl +f20vg + f3Cve))J (19)
Upon rearranging, the output derivatives can be expressed compactly as
y=D+ Ew
where § = [1 92 ¥3]7, w = [Cy Cyg v]T and
,— f3Cve
D = g3 Cve
| —VCLISE (L fs+ Eas) + L]
i fi - f ) 0
E = 9 g2 0
L —VCul3B(EA+5E0) + 3R] —VCwk[§2(Efa+ Lo+ 521 —Vh
Provided F is invertible in a region {2 of the state space, the feedback law
(20)

w=E"Ygs—T(y —ys) — D)
achieves exact linearization of the system, with tracking error dynamics given by
(9—9a) + Ty —ya) =0

If T' is chosen as a diagonal positive-definite matrix, the resulting control law is called “de-
coupling control”, since the dynamics of the output errors are decoupled. If the appropriate
function definitions are substituted, the forms of the E' and D matrices are as follows

Cl+/(P = B,)pCle
D= Cy /B2 Cre

Yot [, ap+0185fg§T(P—Ps)J




Civ (B = P)p f2 0
= | GVE=Pp () g (k) 0
_,VC'NC{C’Q\/(PI—'P)p,P _ VO, 204 r, -V (P “Py)p

ENG=) b T P-P)p
where o Coee ,
P - 4P
I, = —_— —
z [a+m WG+ (PP

oP oP
L Op t J

4.3 . Input-Output Linearizability of Augmented Model

The ability to construct a feedback linearization controller hinges, first, on stable zero

dynamics of the augmented system, and, second, on the invertibility of matrix £

4.3.1 Invertibility of F

By inspection,it is readily seen that the first two rows of F are linearly independent provided

hg ¥ h;. This has a direct physical integpretatior;: if the two fluids have the same thermal

properties (ile., enthalpies), the ability to change the thermal properties of the mixture by
changing the relative flows is lost. Gas and liquid enthalpies are different for the expected
operating conditions. The thlrd row is linearly mdependent from the first two if P—Ps > 0,
which is also true for the Imxer Therefore E is invertible over the whole range of expected

e %

mixer operating conditions. -

4.3.2 Zero Dynamics of the Augménted Model

As it is known, the zero dynamics is preserved under finput transformations [4]. This implies
that one may examine the non-augmented model for zero dynamics and draw conclusions
about the augmented model’s zero dynamics. Suppose the exit flow is to be held constant
at a value Y33. The only way in Wthh thls can be a.chleved is by lettmg

at all times. Differentiating the other two outputs and equating them to zero results in

y 1 Y3o

Cult) = 705 (~0Cu(®) + 2 ) (22)
= 1 93(t)Ya0

Cuglt) = = (m010u) + B0 (29

Upon substitution and rearrangement, it is seen that there exist three uniquely defined
control inputs which hold the outputs constant. Since two of the outputs coincide with

10




the states, it trivially follows that they are kept bounded, and therefore the system has
stable zero dynamics (i.e., the system is minimum-phase). The control inputs are given by

Eq. (21) and, dropping the time notation,
_LYs‘of 1 ( 9 _ ﬂ)

_ s fi
Cog = fi92 — g1f2 0
_ Yol __ fife 93 _ ﬂ)} 25
Cul Vfi [1 fig2 —g1f2 <f3 fi )

Note that the above formulas can be used to find the valve positions at which the system

has a prescribed outflow and a pair of thermodynamic properties.

5 Small-Signal Model
The dynamic model of the mixer can be written in the form

21 = F]_(Zl, 22, Cvg; th C’UE) (26)

2.’2 = F2(z17 22, C‘Ug’ C’Ul; Ove) (27)

where Fi(-) and Fy(-) are nonlinear functions of the state and valve coefficients. For the
remainder of this article, we will denote constant or equilibrium values of any variable by
an upper bar (-). Given constant values of valve flow coefficients C, = [Cypy Cui Coel*
(superscript T' denotes transposition) and constant fluid properties, the state of the model

#(t) = z1 . Internal Energy
zs: Density

reaches a constant equilibrium 'point Z. Next, consider perturbing such an equilibrium by

small signals z(¢) and u(t) so that
z(t) =2z + z(t) and  C,(t) =Cy + u(?)

where u(t) denotes a small, valve-coefficient correction/regulation signal. Then, a standard
linearization of Egs. (26)-(27) results in the small signal model

z = Az + Bu (28)

where z(¢) is the small perturbation state vector, u(t) is the small perturbation control

signal, and the two-by-two matrix A and two-by-three matrix B are given by

8F,  OF oFm 8m  OF
A — Oz1 Oz0 B — 6Cug (901,1 8Cpe

OF, OF; ’ dFy AF, OF,

dz1 Oz 8Cyg OCy OCye

11




where the partial derivatives are evaluated at the equilibrium state Z and constant valve
flow coefficient vector C,. Output equations of the form

y = Czr + Du
where matrices C and D are appropriately dimensioned are easily appended to the model (28)

to account for the measurement of certain variables such as temperature, pressure, or flow.
An output of interest is the exit flow w,. Using Eq. (3) and linearizing around a chosen

equilibrium point, we obtain the linear approximation

Oae Oc,
Welin = [62{16 aszeq z + [ae]eq Uye = Cvflowl' + -Dflow'u've

Other outputs of interest are the mixer pressuré P, and the exit temperature 7,. Taking
these to be functions of the mixer internal states, that is,

P, = fp(z1(t),22(t)) and T. = fr(z(?),22(2)

then, the linearization around the chosen equilibrium gives

oFP, OF,
F, viin — - = v
g [&1 aZQ Jeq :L' Cp ¥
and oT, T
Tetin = = CJ z = Cte-'r
8z1 822 eq

The indicated partial derivative terms may be calculated numerically using accesory rou-

tines.

5.1 Numerical Example

Table 1 lists the data for a typical equilibrium point FQ; corresponding to a given set of
outflow requirements. The matrices A and B are evaluated at the equilibrium EQ; listed

25.11 332.74 —42.01 }

‘in Table 1 to be
[ 0.651 0.6612 ——0.49%9

| -17.52 —3393.08 | B
—0.1597 —43.45 ! o

For an output y = w,, the linear approximation is
wflow® + Dilowive = [0.2386 66.84]z + [1.23] uye

Welin =
The eigenvalues of A lie in the left half of the complex plane, establishing the local stability
of the model by Lyapunov’s linearization method [10]. Although not shown here, the
computation can be performed at any point in the range of operation, showing stability in
a larger region. Local controllability [10] can be likewise evaluated from the linearization at
various points in the operating region. In this example, the controllability matrix [B| AB]

has rank two.
12



p T 5 h | Coopen | WOPEN | @ Z 7
(ps1) (F) (Ibm/ft3) | (BTU/1bm) lbm/s
GH, IN [ 13500 | 90 2.91 2113.6 230 | 0.96 - -
GH; OUT | 6804 | 1304 | 1.702 2113.6 | - - 372 || - -
| LH,IN | 8500 | -3¢0 | 5.042 329 115 | 17.74 : - -
LH; OUT || 6804 | -326 ] 4.519 329 - - 3321 | - -
Mixer | 6804 | 273.32 | 3.84 508 - - - | 181.39 | 3.84
Outflow || 5533 | -266.21 | 3.404 | 508 270 | 1112 | 3693 | - -

Table 1: Initial Equilibrium Data. Underlined Values are Computed. (IN=Into Valve;
OUT=O0ut of Valve). z; in BTU/lbm; z; in lbm/ft3.

6 Model Validation

The usefulness of the model must be demonstrated with real data. Visual and quantitative
assesments of the model’s ability to capture the essential dynamics of mixer operation are
provided in this section. Data available for model validation consisted of a preliminary
operation of the mixer with Nitrogen as working substance. The thermodynamic lockup
routines discussed earlier were set to work with Nitrogen, without modifications to the

model equations.

6.1 Calibration of Valve Coeflficients

Part of the experimental data corresponds to nearly steady conditions. A measurement
of the flows and of some thermodynamic properties can then be used to estimate the cor-
responding values of the model valve coefficients. The coefficients corresponding to other

percent openings are found by direct proportionality.

6.2 Boundary Conditions and Valve Position Histories

The thermodynamic properties at the inlet of the liquid and gas valves change with time
and were measured throught the duration of the experiment. In particular, pressure and
temperature were recorded, data from which the enthalpy and density can be easily found
by direct lookup of appropriate thermodynamic tables. The exit fluid was dumped into
the atmosphere, thus establishing a fixed boundary pressure at the outlet of the exit valve.
Knowledge of the above properties, valve position history and initial conditions of the mixer
states is sufficient to obtain a numerical solution to the differential equations. The initial
conditions are obtained from the measured mixer internal temperature and pressure at the
begining of the experiment. These mixer variables were measured at all subsequent times

13
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Figure 3: Inlet Thermodynamic Properties and Valve Position History

during the experiment and provide the basis for comparison and evaluation of the model. It
is to be noted that during the actual experiment, the exit valve was kept at a fixed position.
Figure 3 shows the measured temperatures and pressures of the liquid and gas nitrogen as

recorded, as well as the valve positions.

6.3 Simulation

The boundary variables shown in Figure 3 were fed into a Simulink model of the mixer
equations. Figures 4 and 5 show the simulated and measured temperature and pressure
inside the mixer. Despite of some spurious effects due to the interaction of the integration
method with noisy input data, it can be seen that the agreement is very good. It should be
noted that the pressure curve has been slightly shifted to compensate for an initial offset

error found in the original data.

6.4 Immediate Improvements to the Model

The mathematical model developed may be improved and extended by considering the static
and dynamic characteristics of valve actuation. In the above development, it is assumed

14
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Simulated vs. Measured Pressure
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that the valve opening coefficients can be directly and instantaneously commanded to any
desired value. This assumption did not interfere, however, with the model validation, since
actual valve coefficient responses were available and were used instead of valve commands.
In the practical situation, the control system has authority over the commanded openings
only. A simple model of valve response is given by the first order system

!
.

Cy+ B¢ (29)

Cy =
where ( is the commanded valve opening, 7 is a time constant and § is a proportionality
constant. An equation of the above form must be written for each of the three valves in the
system and the model must be augmented with these dynamics, thus becoming a 5th-order
model. Note that direct proportionality has been assumed to exist between ¢ and C; under
steady conditions (C"v = 0). If nonlinearity is observed in an experimental characterization

of the valve, it can be included in the form:

Gy=~2Cy+4(0) (30

where g is a function to be determined from static calibration, as done in [6]. Further

improvements to the model include adding a disturbance term -mainly corresponding to
unmodelled heat transfer- to be used in robust controller design. A Matlab-based graphical
user interface (GUI) is currently under development that will provide flexibility in using the

model in simulation studies.

7 Conclusions

A mathematical model for the mixer system is presented. The model consists of a system
of two nonlinear equations having density and internal energy as states. The independent
variables are the valve positions represented by flow coefficients, and the controlled outputs
are mixer pressure, exit temperature and exit mass flow. Model reliability is ensured by the
use of function calls to real thermodynamic data. It is shown that, in the expected range of
operation, the mixer has a single equilibrium point for each set of fixed valve coefficients and
that it is feedback linearizable and locally stable. The reachability of operating conditions
is shown by the possibility of determining a unique set of valve coefficients that achieve
a desired set ot steady outputs. The model is validated against experimental data with

excellent agreement.
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